Tail Estimates for the Brownian Excursion Area and Other Brownian Areas

نویسنده

  • GUY LOUCHARD
چکیده

Several Brownian areas are considered in this paper: the Brownian excursion area, the Brownian bridge area, the Brownian motion area, the Brownian meander area, the Brownian double meander area, the positive part of Brownian bridge area, the positive part of Brownian motion area. We are interested in the asymptotics of the right tail of their density function. Inverting a double Laplace transform, we can derive, in a mechanical way, all terms of an asymptotic expansion. We illustrate our technique with the computation of the first four terms. We also obtain asymptotics for the right tail of the distribution function and for the moments. Our main tool is the two-dimensional saddle point method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas

Abstract: This survey is a collection of various results and formulas by different authors on the areas (integrals) of five related processes, viz. Brownian motion, bridge, excursion, meander and double meander; for the Brownian motion and bridge, which take both positive and negative values, we consider both the integral of the absolute value and the integral of the positive (or negative) part...

متن کامل

Dimension free and infinite variance tail estimates on Poisson space

Concentration inequalities are obtained on Poisson space, for random functionals with finite or infinite variance. In particular, dimension free tail estimates and exponential integrability results are given for the Euclidean norm of vectors of independent functionals. In the finite variance case these results are applied to infinitely divisible random variables such as quadratic Wiener functio...

متن کامل

Area Distribution of Elastic Brownian Motion

We calculate the excursion and meander area distributions of the elastic Brownian motion by using the self adjoint extension of the Hamiltonian of the free quantum particle on the half line. We also give some comments on the area of the Brownian motion bridge on the real line with the origin removed. We will stress on the power of self adjoint extension to investigate different possible boundar...

متن کامل

Meander Characterized by Sampling at Independent Uniform Times

For a random process X consider the random vector defined by the values of X at times 0 < Un,1 < ... < Un,n < 1 and the minimal values of X on each of the intervals between consecutive pairs of these times, where the Un,i are the order statistics of n independent uniform (0, 1) variables, independent of X. The joint law of this random vector is explicitly described when X is a Brownian motion. ...

متن کامل

Excursion Laws and Exceptional Points on Brownian Paths

The purpose of this note is to present an example of a family of “exceptional points” on Brownian paths which cannot be constructed using an entrance law. Watanabe (1984, 1987) proved that various families of exceptional points on Brownian paths may be constructed using entrance laws. Special cases include excursions of onedimensional Brownian motion within square root boundaries (see Watanabe ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007